Процедура подготовки моделей PMOD1 – чтение модели фотосферы в оригинальном виде и преобразование к стандартному.

PMOD1 (Prepare MODel, step 1) – первый шаг подготовки моделей включает две функции:

- 1. Интерпретацию физических параметров оригинальных моделей и вычленение из них параметров, в обязательном порядке необходимых для расчета.
- 2. Интерполяцию из сетки глубин оригинальной модели в стандартную сетку глубин расчета.

Функция преобразования.

Обязательными параметрами моделей для расчета профилей Стокса фраунгоферовых линий являются

```
    X - логарифм оптической глубины
    T - температура
    LGPG - логарифм газового давления
    LGPE - логарифм электронного давления.
```

Эти параметры используются во многих оригинальных моделях. В то же время, в оригинальных моделях также часто приводятся:

```
TAU - оптическая глубина;
TETA - величина, равная 5040/Т;
PG - газовое давление;
PE - электронное давление.
```

Как видим, работа по преобразованию сводится к ограниченному числу функций. Их можно свести в таблицу:

и соответственно определить единую функцию:

Таблица соотношений между параметрами.

Стандартные имена параметров сведены в таблицу, из которой можно выяснить соотношение между параметрами.

Имя	Из какого можно	Номер (код)	Это вектор
параметра	получить	функции	глубин
X	TAU	C_fn_lg	1
T	TETA	C_fn_teta	0
LGPG	PG	C_fn_lg	0
LGPE	PE	C_fn_lg	0
TAU	X	C_fn_exp10	1
TETA	T	C_fn_teta	0
PG	LGPG	C_fn_exp10	0
PE	LGPE	C_fn_exp10	0
T	TEMP	C_fn_dummy	0

Работа модуля PMOD1 по интерпретации параметров исходных моделей состоит в том чтобы:

- 1. Прочитать исходные параметры, получить их имена.
- 2. Сопоставить со списком имен параметров, требуемых для расчета.
- 3. Преобразовать физические величины по заданным функциям преобразования.

Формат файлов с оригинальными моделями.

Для того чтобы обеспечить сопоставимость расчетов комплекса SunWorld и оригинальных результатов авторов работ, использующих известные или собственные модели фотосферы, предусмотрено хранение и использование оригинальных моделей в виде, наиболее близком к тексту статей, где они описаны.

Вот пример фрагмента таблицы для модели фотосферы Holweger-Muller 1974:

-6.539 -6.279 -5.868 -5.588	3900. 3920. 3970. 4030.	0.769 1.171 1.598 1.842	-3.140 -2.752 -2.342 -2.105	0.0 0.0 0.0
0.761	8250.	5.213	3.092	1.80
0.877	8420.	5.229	3.196	1.80
0.967	8500.	5.242	3.245	1.80

Чтобы программа могла интерпретировать данные, достаточно помимо буквальной копии таблиц разместить в первых строках файла стандартизованное описание. В системе SunWorld09 первые четыре строки файла – это описание модели:

- 1 краткое наименование модели
- 2 развернутое наименование модели
- 3 описание литературного источника
- 4 имена автора/авторов модели

Следующие две строки определяют число колонок (столбцов) и число строк в модели.

Далее по числу колонок следует описание колонок. В первом слове приведен ключ колонки – стандартное имя параметра. Далее в строке может быть произвольная информация. Обычно там для подсказки помещаются варианты имен альтернативных представлений параметра.

Следующие две строки также не воспринимаются программой и используются для оформления таблицы.

И, наконец, по числу указанных строк следуют значения параметров. Значения практически всегда являются действительными числами, поэтому они разделяются пробелами.

Вот пример окончательного содержимого файла с моделью HSRA:

```
МОДЕЛЬ HSRA 1971
                              ! краткое имя модели
МОДЕЛЬ HSRA - GINGERICH ET AL. 1971 ! расширенное имя модели
 S.PH.,1971, 18N3,PP.347-365 ! описание литературного источника
GINGERICH ET AL.
                             ! имена авторов
колонок 4
                             ! число колонок, читается ВТОРОЕ слово
CTPOK
       54
                             ! чсило строк, читается ВТОРОЕ слово
                           ! имя параметра для 1-го столбца в 1-м слове
! - '' - 2 - '' -
LGT
            TAU
TEMP
             TETA
                             ! - ' ' -
                                                     _ '' _
                                              3
PG
            LGPG
                             ! - ' ' - 3
                                                     _ ..._
PE
            LGPE
------! строчка для оформления
LGT T PG PE! - '' - - имена колонок
-4.0 4170. 8.682E+2 6.119E-02 ! 4 значения, разделенные пробелами
-3.9 4175. 1.007E+3 6.958E-02
-3.8 4190. 1.163E+3 7.964E-02
1.2 9220. 1.951E+5 4.152E+03
1.3 9390. 2.001E+5 4.999E+03
1.4 0000. 0.000E+5 5.983E+03
```

Процедура чтения оригинальных моделей.

Каждый расчет начинается с чтения модели фотосферы. Чтение состоит в анализе исходного файла — определении состава параметров фотосферы и создания экземпляров объекта туемо для каждого вектора. Процедура чтения октм сравнивает имена параметров - ключевые слова с предопределенной таблицей и поэтому не может принять физические параметры, которые ни разу ещё не встретились в опыте работы. При необходимости таблица должна быть дополнена. Кроме собственно имени параметра в ней описывается и соотношение этого параметра с другими.

После стандартного описания модели октм читает строки со значениями и раскладывает значения по колонкам параметров, т.е. по объектам туемо.

Новым объектам туемо задается имя модели, совпадающее с именем файла, имена параметров. Из параметров выбирается тот, который задает таблицу глубин. Ссылка на объект туемо для глубин проставляется во всех остальных векторах туемо.

Задание набора обязательных параметров.

Когда оригинальная модель загружена, PMOD1 пытается найти в ней все необходимые для дальнейших расчетов данные.

Сначала составляется список необходимых векторов:

```
VE_X.Init (sMod,'X', 1);
VE_T.Init (sMod,'T', 1);
VE_PG.Init (sMod,'LGPG',1);
VE_PE.Init (sMod,'LGPE',1);
VE_VMI.Init(sMod,'VMI', 1);
```

В процедуре TVEMO.Init первый параметр – имя модели, последний – номер сетки глубин. Процедура Init подготавливает объект TVEMO с пустым вектором параметра в нем, за исключением случая, когда это параметр глубин. Вектор глубин автоматически заполняется.

После этого пустые векторы заполняются данными из оригинальной модели:

```
VE_T .SrcFill;
VE_PG .SrcFill;
VE_PE .SrcFill;
VE_VMI.SrcFill;
```

Где каждая процедура TVEMO.SrcFill самостоятельно подбирает соответствующий вектор в исходной модели, делает преобразование, выбирая функцию преобразования из таблицы. В заключение процедура SrcFill делает интерполяцию.

Интерполяция на стандартную сетку глубин.

Для каждого заведенного в программе объекта TVEMO в исходной сетке глубин создается такой же объект TVEMO, но уже для стандартной сетки значений $X = \log 10(\tau)$. Значения вычисляются с помощью интерполяции или экстраполяции.

Большинство оригинальных моделей задано в более узких границах, чем наша стандартная сетка, поэтому экстраполяция оказывается достаточно условной и только линейной. Чтобы избежать явных ошибок при проведении расчета необходимо или задавать нижнюю и верхнюю границы интегрирования уравнений переноса излучения или сделать предварительную ручную обработку значений на краях диапазона глубин.

При расчете переноса излучения для многих параметров важно не только их значение, но и значение производных. Например, линейная интерполяция температуры приводит к интересному эффекту: вычисляемая глубина линии в процессе интегрирования периодически то растет, то убывает. Это связано с тем, что производная от температуры, которая по физическому смыслу оказывается функцией источника S, меняется скачкообразно (ступеньками) в точках исходной сетки.

Таким образом, для обеспечения плавности производных, при интерполяции используются полиномиальные методы, в частности метод Эйткена.