А.В.Баранов, С.Г.Можаровский

ПРОЯВЛЕНИЯ АНОМАЛЬНОЙ ДИСПЕРСИИ В СОЛНЕЧНЫХ СПЕКТРАЛЬНЫХ ЛИНИЯХ СО СЛОЖНОЙ СТРУКТУРОЙ РАСЩЕПЛЕНИЯ

Для 13 спектральных линий железа и одной линии хрома в диапазоне длин волн $\lambda\lambda$ 621,3–633.7 нм выполнены решения системы уравнений переноса излучения с учетом аномальной дисперсии. Использована модель солнечного пятна Книра. Расчет велся для значения напряженности магнитного поля 2400 и 2800 Э, углы наклона силовых линий полагались равными 60° и 75°.

Проведенные расчеты показали, что профили круговой поляризации имеют инверсию вблизи центра линии FeI λ 630.2 нм. Из остальных линий наиболее заметную инверсию V- профиля имеют линии FeI λ 623.2 нм и CrI λ 633.0 нм. Обе они имеют значительные факторы Ланде (2 и 11/6 соответственно) и компактные группы π – и σ –компонентов. Кроме этих линий еще пять имеют указания на инверсии V–профиля. Заметных особенностей в центре не имеет линия с триплетным расщеплением и малым фактором Ланде g=0.5 (FeI λ 627.0 нм). Нет явных признаков инверсий V-профиля у линий FeI $\lambda\lambda$ 621.3 и 633.7 нм. Они имеют большой эффективный фактор Ланде (g=2), но их структура расщепления — ((2), 3,5))/2 — такова, что их π –компоненты находятся далеко от центра линий и заметный эффект показывать не могут. Из остальных линий небольшой эффект (<1%) имеют линии FeI $\lambda\lambda$ 628.0, 632.3 и 626.5 нм.

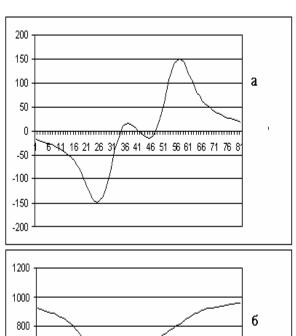
Экспериментальный материал в основном подтверждает приведенные выше расчеты, но следует отметить, что указания на инверсию профилей круговой поляризации показывают наблюдения в линии FeI λ 633.7 нм. Природа этого не совсем понятна, но, возможно, связана с наличием в пятне элементов тонкой структуры.

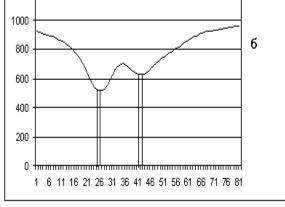
Целью данной работы являлось рассмотрение проявления аномальной дисперсии в солнечных пятнах вблизи центров ряда

магнитоактивных линий с различной структурой зеемановского расщепления.

Аномальное поведение магнитоактивных линий в спектрах солнечных пятен известно довольно давно. В 1959 году на подобный эффект первым указал академик А.Б.Северный [9]. В 60-е годы теоретическое объяснение проявлений аномальной дисперсии вблизи центров в относительно сильных линиях с большим фактором Ланде было дано Д.Н.Рачковским [8]. В семидесятые годы аномальное поведение параметров Стокса вблизи центров магнитоактивных линий довольно интенсивно изучалось [1–2, 6–7,10–11]. Из последних работ в этом направлении отметим работу В.Г.Лозицкого и Д.Г.Коломиец [8]. В работах преимущественно анализировались профили интенсивности г_і и профили круговой поляризации г_V линии Fe1 630.25 нм.

При этом возникла некоторая неопределенность в истолковании объекта исследований. В спектрах солнечных пятен было отмечено явление, которое получило название смещение ткомпонента и другие особенности. Их сущность заключается в том, что при наблюдениях спектров пятен с поляризационной оптикой в линиях с большим расщеплением наблюдаются, как правило, два экстремума интенсивности. Один по своему положению по длине волны примерно соответствует (расположен несколько дальше от центра линии по длине волны) положению о-компонента, второй, близкий по положению к л-компоненту - несколько смещен от центра линии в сторону, противоположную положению σ-компонента. Ни тот, ни другой экстремум с реальными положениями π- и σкомпонентов не совпадают, причем различия в первом случае больше. Появление смещенного экстремума вблизи о-компонента обусловлено взаимным наложением компонент расщепления линии, хорошо проявляется при анализе формы гу-профиля данной линии и проявляется до тех величин расщепления, при которых взаимодействие компонент отсутствует. Для случая слабого магнитного поля этот эффект рассмотрен нами в [3].


У центра спектральной линии отмечаются особенности, связанные как с проявлениями аномальной дисперсии, так и со смещением центрального компонента $(r_V + r_I)$ —профиля в спектре круговой


поляризации (не т-компонента!). В данной работе рассматривается другой эффект – инверсия гу-профиля вблизи центра линии. Последнее поясняет рис.1., где приведены профили линий, рассчитанные для типичных значений напряженности магнитного поля Н и углов наклона силовых линий магнитного поля к лучу зрения у. На рис 1.а приводится r_v-профиль линии Fe1 630.25 нм с характерными изменениями r_V-профиля у центра линии, вызванными воздействием аномальной дисперсии. Н полагалась равной 2600 Э, $\gamma = 60^{\circ}$. На рис.1.6 приведен ($r_V + r_I$)-профиль той же линии при тех же Н и у. Вертикальными чертами на рисунке отмечены (слева направо): положение экстремального значения гу-профиля, истинное положение о-компонента, истинное положение центра линии (и центра π -компонента), а также положение экстремума ($r_V + r_I$)профиля. Анализируя рисунок, можно видеть, что рассчитанные смещения компонентов расщепления линии Fe1 630.25 нм относительно истинных положений π - и σ -компонентов имеют характерную величину 16 mÅ. Отметим, что для рассчитываемой линии подбором значений H, γ , $Lg(gf)_I$ и g_i можно получить рассчитанные смещения $(r_V + r_I)$ —профиля примерно до 40 mÅ.

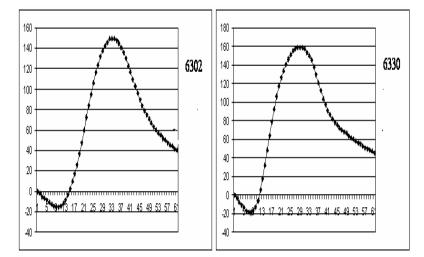
Для 12 спектральных линий железа, одной линии ванадия и одной — хрома (данные о них приведены в табл.1), расположенных в диапазоне $\lambda\lambda$ 621,3—633.7 нм, выполнены решения уравнений переноса излучения с учетом аномальной дисперсии. Использована модель солнечного пятна Книра. Расчет велся для значения напряженности магнитного поля 2400 и 2800 Э, углы наклона силовых линий полагались равными 60° и 75°.

Проведенные расчеты показали, что профили круговой поляризации имеют инверсию вблизи центра линии FeI λ 630.2 нм (амплитуда инверсии A= 1.5%). Из остальных линий наиболее заметную инверсию V- профиля имеют линии FeI λ 623.2 нм (A= 0.6%) и CrI λ 633.0 нм (A= 1.9%). Обе они имеют значительные факторы Ланде (2 и 11/6 соответственно) и компактные группы π – и σ – компонентов. Видно, что у линии хрома глубина инверсии сравнима (а при заданных для расчета параметрах даже больше) с глубиной инверсии r_V –профиля линии FeI λ 630.2 нм, хотя размер областей

инверсии у последней больше. Данные, характеризующие инверсии различных спектральных линий, приведены в табл.2.

Puc. 1. По вертикальной оси значений даны в тысячных долях интенсивности непрерывного спектра, по горизонтальной — значения выражены в пикселах (1 пиксел = 16 mÅ). Положение центра линии соответствует пикселу за номером 41

Таблина 1


Эл-т	λ_i , нм	E _i , эB	Lg(gf) _i	h _i	h_{ip}	gi
Fe1	621.34	2.22	-2.58	-125	-306	2
V1	621.38	0.30	-1.84	-110	-192	1.495
Fe1	621.93	2.20	-2.39	-140	-326	1.667
Fe1	623.26	3.65	-1.22	15	-258	2
Fe1	626.51	2.18	-2.57	-130	-316	1.583
Fe1	627.02	2.86	-2.64	-15	-224	0.5
Fe1	628.06	0.86	-4.37		-304	1.45
Fe1	629.10	4.73	-0.69		-192	1.5
Fe1	629.78	2.22	2.74		-300	1.0
Fe1	630.15	3.65	-0.56	-110	-286	1.667
Fe1	630.25	3.69	-1.14	10	-264	2.5
Fe1	632.27	2.59	-2.37	-110	-285	1.5
Cr1	633.01	0.94	-2.49	-205	-202	1.833
Fe1	633.68	3.69	-0.75	-80	-283	2

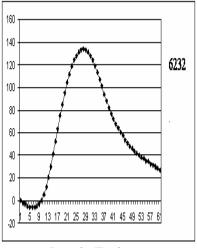
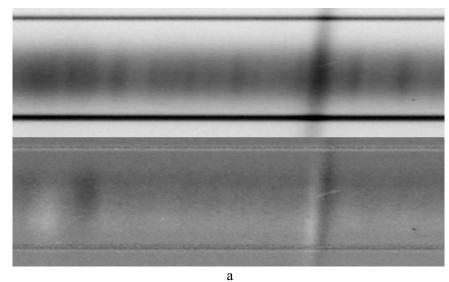

Примечание. В табл.1 приведены последовательно: элемент, длина волны линии λ_i , потен-циал возбуждения ее нижнего уровня E_i , логарифм сил осцилляторов $Lg(gf)_i$, глубина образования линии в тени пятна h_i и в фотосфере h_{ip} . В последней колонке даны эффективные факторы Ланде g_i .

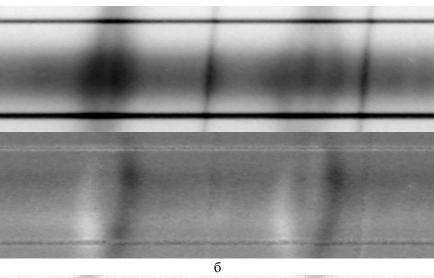
Таблица 2

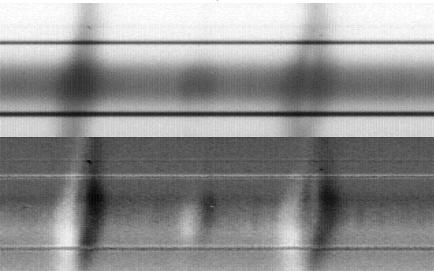
Линия, λ, нм	H=2400 Э, γ=60° A,% L,mA	H=2600 Э, γ=75° A,% L,mA	H=2800 Э, γ=60° A,% L,mA	H=2800Э, γ=75° A,% L,mA
623.2	0.6 22	0.5 28	0.8 24	0.6 21
626.5	0.3 11	0.3 18	0.4 13	0.3 30
628.0	0.4 10	0.3 15	0.5 15	0.4 20
630.2	1.5 34	1.0 39	1.7 39	1.0 43
632.3	0.2 10	0.2 15	0.4 12	0.3 18
633.0	1.9 10	1.1 30	2.2 23	1.3 31

Примечание. Величина A — максимальная величина инверсий r_V —профиля, L — размер области инверсий в $m {\mathring A}$.

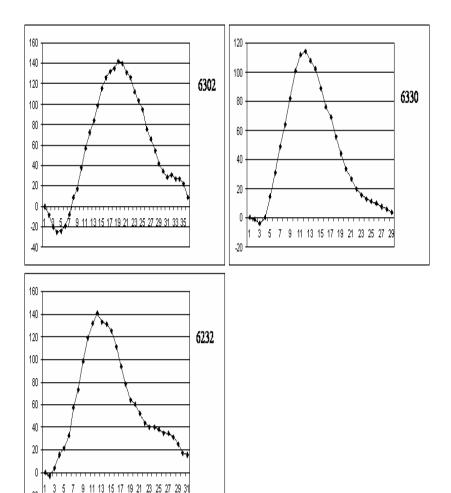


Puc. 2. Профили линий с рассчитанной наибольшей инверсией r_V -профиля. Обозначения те же что и на рис. 1


Кроме этих линий еще пять имеют указания на инверсии r_V профиля. Это линии FeI λ 626.5 нм (A= 0.3%), FeI λ 628.0 нм (A= 0.4%), FeI λ 623.2 нм (A= 0.3%). Количественные значения глубин инверсий приведены для значений H = 2600 Э, γ полагалось равным


60°. При H = $2600-2800~\rm G$ и $~\gamma=75^{\rm o}$ очень слабая (A= 0.1%) инверсия отмечается у линии FeI λ 621.9 нм, не имеющей центрального $\pi-$ компонента расщепления.

Расчеты показали, что сколько-нибудь заметных особенностей в центре не имеет линия FeI λ 627.0 нм с триплетным расщеплением и малым фактором Ланде g = 0.5. Нет явных признаков инверсий г_V—профиля у линий FeI $\lambda\lambda$ 621.3 и 633.7 нм. Они имеют большой эффективный фактор Ланде (g = 2), но структура расщепления — ((2), 3,5))/2 — такова, что их π –компоненты находятся далеко от центра линий и сколько-либо заметный эффект показывать не могут. Но на их расчетных профилях на значительном расстоянии от центра линии есть депрессии (не инверсии!) г_V—профиля, которые, по—видимому, обусловлены действием аномальной дисперсии.



Puc. 3,а.. Триплет FeI λ 627.0 нм с фактором Ланде g=0.5. Разрез поперек пятна. Сверху профиль интенсивности, снизу профиль круговой поляризации.

Рис. 3. Наблюдаемые профили Стокса линий: б – триплет FeI λ 630.2 нм с фактором Ланде g=2.5 (справа), в – линия FeI λ 633.68 нм без центрального компонента (справа). Слева линия FeI λ 633.53. У профиля круговой поляризации линии FeI λ 633.68 нм заметны особенности в центре

 $Puc.\ 4.\$ Экспериментальные профили круговой поляризации линий, имеющих максимальные значения инверсии. По вертикальной оси значений даны в тысячных долях интенсивности непрерывного спектра, по горизонтальной — значения выражены в пикселах

Таким образом, инверсии профилей Стокса круговой поляризации могут наблюдаться во многих спектральных линиях, имеющих более или менее значительные факторы Ланде, компакт-

ные группы компонентов расщепления и эквивалентные ширины в пятне порядка 50 m Å и более.

Экспериментальный материал, изложенный в работе [4] в основном подтверждает приведенные выше расчеты. Наиболее заметные проявления инверсии r_V —профиля в указанном спектральном диапазоне имеют (в соответствие с теоретическими расчетами) линии FeI λ 630.2 нм (A=2.0%), CrI λ 633.0 нм (A=1.0%) и FeI λ 623.2 нм (A=0.6%). В скобках приведены максимальные измеренные значения А. Отметим, что измерения относятся к внутренней полутени пятна.

С учетом конечного спектрального разрешения спектрографа и фотоматериалов, это находится в соответствии с теоретически рассчитанными величинами. Методически, если за центр линии принимать не половину расстояния между одинаковыми значениями r_I —профиля, а точку лежащую на середине расстояния между пиками r_V —профиля, для линий CrI λ 633.0 нм и FeI λ 623.2 нм, можно получить величины инверсий, близкие к рассчитанным.

Однако следует отметить, что указания на инверсию профилей Стокса круговой поляризации показывают наблюдения в линии FeI λ 633.68 нм, имеющей у центра величину А \sim 0.2% (см. рис.3.). Природа этого не совсем понятна, но, возможно связана с наличием в пятне элементов тонкой структуры, как это предположено в [6]. На возможность этого, исходя из анализа экспериментальных профилей Стокса линии FeI λ 630.2 нм, указано в недавней работе [5]. Вопрос требует внимательного дальнейшего анализа с использованием линий со структурой расщепления, аналогичной структуре расщепления линии FeI λ 633.68 нм.

Авторы благодарны Н.Н.Барановой за помощь в расчетах и в подготовке рукописи работы. Работа выполнена при поддержке Программы N 16 Президиума РАН и грантов ДВО РАН 09–I–П7–01, 09–II–CO 02–002 и 09–III–A–02–49.

ЛИТЕРАТУРА

1. *Баранов А.В.* О расщеплении π–компонента магнитоактивных линий в спектрах солнечных пятен // Солнечные данные. 1974. № 6. С. 66–71.

- 2. *Баранов А.В.* О природе расщепления π–компонента магнитоактивных линий в спектрах солнечных пятен // Солнечные данные. 1974. № 7. С. 100–105.
- 3. *Баранов А.В.* Поведение экстремумов профилей Стокса магнитоактивных линий в спокойной солнечной фотосфере.// Солнечная активность и ее влияние на Землю. Владивосток: Дальнаука, 2005. С. 3–14. (Тр. УАФО; т.8, вып.8).
- 4. *Баранов А.В.,..Лазарева Л.Ф.* Анализ профилей Стокса спектральных линий со сложной структурой расщепления и проблема измерения магнитного поля в солнечном пятне // Солнечная активность и ее влияние на Землю. Владивосток: Дальнаука, 2006. С. 20–33 (Тр. УАФО; т. 9, вып. 9).
- 5. Лозицкий В.Г., Коломиец Д.Г. Особенности расщепления зеемановской π -компоненты линии FeI λ 630.25 нм в спектрах солнечных пятен и вспышек // Солнечная активность и ее влияние на Землю. Владивосток: Дальнаука, 2006. С. 79–96 (Тр. УАФО; т. 9, вып. 9).
- 6. Могилевский Э.И., Демкина Л.Б., Иошпа Б.А, Обридко В.Н. // Structure and Development of Solar Active Region. IAU Sump. No. 35. Budapest. 1967. Dordreht/Ed. By K,O.Kiepenheuer. P.215.
 - 7. Обридко В.Н. Солнечные пятна и комплексы активности. М: Наука. 1985. С. 256.
- 8. Рачковский Д.Н. Эффекты магнитного вращения в спектральной линии //Известия Крым, астрофиз, обсерватории. 1962. Т.28. С.259–270.
 - 9. Северный А.Б. // Астрон. Ж. 1959. т. 36. с. 126.
 - 10. Beckers J.M., Schröter E.H.// Solar Phys. 1969. v.7. P.22. (v.10. P.384.)
- 11. *Kunzel H., Staude J.* The anomalous splitting of the π -component of a Zeeman triplet in sunspot umbrae and suggestions for its interpretation // Astron. Nachrichten. 1975. V.296. N 4. P.171–176.

УДК 523.98

А.В. Баранов, С.Г. Можаровский

АНАЛИЗ МОДЕЛИ ЭЛЕМЕНТА ТОНКОЙ СТРУКТУРЫ СОЛНЕЧНОЙ ФОТОСФЕРЫ, ПОСТРОЕННОЙ ПО СВЯЗИ МАГНИТНОГО ПОЛЯ И ЭКВИВАЛЕНТНОЙ ШИРИНЫ СПЕКТРАЛЬНЫХ ЛИНИЙ

Есть модель элемента тонкой структуры факела, которая описывает связь магнитного поля H и эквивалентной ширины спектральных линий. Здесь для решения этой задачи использован расчет спектральных линий с учётом аномальной дисперсии.

Для 28 спектральных линий выполнен анализ k_i -площади r_v -профилей, нормированных на площадь r_v -профиля линии Fe 1 λ 525.35 нм; k_i сравнивались с теоретическими для H=624 Э, $\gamma=45^\circ$. Рассмотрены параметры связи величин: S_1 – отношения рассчитанных и наблюдаемых k_i и коэффициенты их корреляции S_2 . При использовании теории Унно среднее значение S_1 =1.001, а величина S_2 =0.988. При учете аномальной дисперсии S_1 = 0.902, а S_2 =0.975. Есть заметное различие S_1 при близких коэффициентах корреляции. Вероятно, это следствие инверсий r_v -профиля, наблюдаемых у центров магнитоактивных линий. Учет этого предполагает коррекцию модели в сторону уменьшения температуры.

Известно, что профили Стокса многих фраунгоферовых линий сильно зависят от физических условий в солнечной атмосфере. Так, из наблюдений следуют факты усиления и ослабления линий в спектре солнечного пятна (см., например, [14]), ослабления линий во флоккулах (сводку ссылок см. в [15]), изменения профилей линий во время вспышек [1,2]. В [2] получено, что характер изменения профилей магнитоактивных линий во время вспышек в значительной мере определяется изменениями температуры, плотности и поля скоростей в фотосфере. Изменение температурного распределения с высотой во вспышке (согласно построенным полуэмпирическим моделям) отмечено в [12].