можно считать вполне удовлетворительным. При этом, зависимость $E_t(x)$, использованная нами в [1,2] для согласования наблюдаемой и расчетной связи величины магнитного поля с эквивалентной шириной линии W в фотосфере, на малых оптических глубинах должна быть уточнена. В принципе, противоречий между $E_t(x)$, приведенными в [4] и заданными зависимостью (c) нет. Заданный нами в (c) рост $E_t(x)$ на малых оптических глубинах должен был отражать отмечаемый многими исследователями данный факт (см. напр. [5]). Отметим, что на рассчитываемую связь H и W в спокойной фотосфере задание зависимости $E_t(x)$ в виде (c) практически не влияет.

Полученные результаты показывают, что ряд измерений H, выполненных при помощи анализа r_v- и r_Q-профилей различных спектральных линий, требует уточнения.

ЛИТЕРАТУРА

1. Баранов А. В., Баранова Н.Н. Особенности модели магнитного поля элемента тонкой структуры солнечной атмосферы, найденные по зависимости магнитного поля от эквивалентной ширины линий // Солнечная активность и ее влияние на Землю. Владивосток: Дальнаука, 1996. С. 3–14.

2. Баранов А. В., Баранова Н.Н. Модель тонкоструктурного элемента солнечной атмосферы по данным анализа профилей Стокса различных спектральных линий // Солнечная активность и ее влияние на Землю. Владивосток: Дальнаука, 1999. Вып. 3. С. 5–14.

3. Баранов А. В. Об ограничениях, накладываемых на модель фотосферного ТС- элемента с сильным магнитным полем // Солнечная активность и ее влияние на Землю. Владивосток: Дальнаука, 2004. Вып. 8. В печати.

4. *Гуртовенко Э. А., Костык Р. И.* Фраунгоферов спектр и система солнечных сил осцилляторов. Киев: Наукова думка, 1989. 200 с.

5. *Canfield R. C., Beckers J. M.* Observational evidence for unresolved motions in the solar atmosphere // Physique des Mouvements dans les Atmospheres Stellaires. Paris, 1976. P. 291–330.

6. *Holweger H., Müller E. A* The photospheric barium spectrum: solar abundance and col-lision of Ba11 lines by hydrogen // Solar Phys. 1974. V. 39, No. 1. P. 19–30.

7. Solanki S. K. Small-scale solar magnetic fields: An overview // Space Sky review. 1993. No. 63. P.1–188.

А. В. Баранов, Н. Н. Баранова

ОБ ОГРАНИЧЕНИЯХ, НАКЛАДЫВАЕМЫХ НА МОДЕЛЬ ФОТОСФЕРНОГО ТС-ЭЛЕМЕНТА С СИЛЬНЫМ МАГНИТНЫМ ПОЛЕМ

В последние десятилетия опубликовано множество работ, посвященных различным аспектам изучения элементов тонкой структуры (ТС) солнечной атмосферы и анализа профилей спектральных линий, по особенностям профилей Стокса которых и получены все основные свойства ТС-элементов. Обзор значительного их количества дан в [11], где приведены все еще основные на сегодняшний день результаты. Позднее исследования этого вопроса сместилось в сторону анализа асимметрии V-профиля Стокса отдельных линий, как правило, имеющих большой фактор Ланде и небольшую эквивалентную ширину. Появился ряд новых моделей элемента ТС (см. напр. [4-5,8]), в том числе объясняющие смещение V-профиля в красную сторону спектра и его асимметрию. В работе [5] хорошее соответствие с наблюдениями получено при использовании трех и четырехкомпонентной модели флоккула. В четырехкомпонентной модели предположено присутствие ТС-трубок двух типов, отличающихся температурным распределением и другими физическими параметрами. Вполне понятно что, вводя многокомпонентную модель со множеством варьируемых параметров, каждый из которых в той или иной степени участвует в формировании профилей Стокса наблюдаемых линий, можно достичь очень хорошего совпадения теории и наблюдений, особенно в том случае, если используется небольшое число линий, как в [5]. Все упомянутые выше модели, вполне удовлетворительно описывая особенности применяемых в анализе линий (Как правило, это пары линий Fe I $\lambda\lambda$ 5247,1 и 5250,2 Å, либо Fe I $\lambda\lambda$ 6301,5 и 6302,5 Å. В дальнейшем для удобства линии обозначаются целыми величинами λ), дают не очень хорошие результаты в применении к сильным линиям и линиям средней си-ЛЫ.

Нами была разработана модель ТС-элемента, удовлетворительно описывающая наблюдаемые в атмосфере Солнца профили упомянутых пар линий, а также связь магнитного поля Н и эквивалентной ширины спектральных линий W [1]. Однако как наша модель, так и модели, описанные в [11], в частности модели Соланки [10] и Келлера [7], при попытке согласовать наблюдаемые свойства r_vпрофиля для всех упомянутых линий одновременно, не позволяют достичь соответствия расстояний максимумов наблюдаемых r_vпрофилей и теоретических с точностью лучше 10%. Величина погрешности представляется нам довольно большой и упомянутые модели, качественно верно описывая наблюдаемые закономерности, в количественном отношении дают результаты, составляющие желать лучшего. Сказанное поясняет табл.1, в графах которой даны последовательно: линия, наблюдаемое расстояние от центра линии до максимума ее r_v -профиля Lr_v для яркого флоккула, для узла фотосферной сетки, а также величины *Lr_v*, рассчитанные для модели, полученной нами в [2] и температурного распределения Соланки [10]. Величины Lr_v в таблице приведены в миллиангстремах (mÅ). Указанные расчетные профили подобраны таким образом, что максимально соответствуют (при заданных распределениях с глубиной величин микротурбулентной скорости Е_t и напряженности магнитного поля *H*) наблюдаемым величинам *Lr_v*. Лучшего согласования наблюдаемых и теоретических профилей найти не удалось. Анализ данных таблицы, помимо просто сравнения, указывает на некоторые любопытные особенности поведения наблюдаемых r_v-профилей этих линий. В узле фотосферной сетки значения Lv_m у линии 5250 явно меньше, а у линии 6301 – несколько больше чем в факеле. Если предполагать, что эти различия обусловлены величиной магнитного поля, то следует считать, что распределение с высотой магнитного поля в узлах сетки и факеле существенно различаются.

				Гаолица
Линия,	Lv_m ,	Lv_m ,	Lv_m ,	Lv_m ,
λÅ	факел	сетка	модель [1]	модель [6]
5247	42-43	39-40	38	38
5250	50-53	44-47	53,5	54
6301	61-64	64-65	60,5	59
6302	63-66	62-63	68	68

Нами в [1,2] для объяснения свойств г_v-профилей предлагалась двухкомпонентная модель, состоящая из области сильного магнитного поля и фотосферной области без поля. В данной работе поставлена задача: описать свойства r_v -профилей всех четырех линий одновременно, используя трехкомпонентную модель, включающую в себя область сильного магнитного поля со своими физическими характеристиками [7], а также области слабого поля и области без магнитного поля, в которых предполагались физические условия, характерные для невозмущенной фотосферы. Расчеты были выполнены в предположении справедливости температурного распределения Соланки [10] – для факела и модели HOLMU [6] – для фотосферы. Выбор модели [10] обусловлен тем, что именно она наиболее часто используется в расчетах различными исследователями и мы получаем возможность корректно сравнить наши результаты с результатами других работ.

Используя систему уравнений переноса излучения в магнитном поле в форме Унно-Степанова и линии Fe I $\lambda\lambda$ 5247, 5250, 6301 и 6302 ÅÅ, мы сравнили теоретические и наблюдаемые r_v-профили этих линий для указанной трехкомпонентной модели. В модели атмосферы Келлера [7] величина напряженности магнитного поля предполагалась меняющейся по формуле $H(\Im) = 1716 + 104*x$, где x = lgr – логарифм оптической глубины. Подобный вид формулы связан с тем, что 1 mÅ расщепления линии 5253 Å соответствует напряженности поля 52 Э. В формуле приведенные значения коэффициентов кратны этой величине. Величина Н данной линии использовалась нами как эталон, на который нормировались величины Н других линий, чем достигалась возможность их сравнения [1,2]. Сами величины Н подбирались с учетом того, что ни одна из изучаемых линий не показывает у центра линии признаков искажений изза аномальной дисперсии, возникающих для указанных линий при величинах *H* > 2000 Э и углах наклона силовых линий к лучу зрения $\gamma > 30^{\circ}$. Отметим, что речь идет о среднем значении *H* по сечению ТС-элемента: максимальное значение поля может и превышать 2000 Э. Угол у как в элементе тонкой структуры, так и в областях слабого поля полагался равным 30°. Величина слабого магнитного поля полагалась равной 52 Э. Распределение микротурбулентной скорости

с оптической глубиной как для TC-элемента, так и в фотосфере описывалось формулой $E_t(\text{км/c}) = 1,0 + 0,05*x - 0,01*x^2$, вполне удовлетворительно описывающей зависимость E_t от x, приведенную в монографии Гуртовенко и Костыка [3]. Распределение газового P_g и электронного давления P_e , как показали результаты расчетов для элемента TC, очень слабо влияют на итоговые профили. Поэтому, как для TC-элемента при расчете профилей линий использованы P_g и P_e из модели фотосферы HOLMU [6]. В областях слабого поля также полагалось температурное распределение соответствующее модели фотосферы HOLMU.

В процессе расчетов выявились замечательные особенности поведения *г*_v-профилей линий, заключающиеся в том, что при малых значениях поля, когда величина расщепления значительно меньше ее доплеровской полуширины, расстояние максимума r_v-профилей от центра линии не зависит от напряженности поля, а определяется величиной доплеровской полуширины линии и отношением коэффициента селективного поглощения в линии к коэффициенту поглощения в непрерывном спектре. При этом глубина r_v-профилей в месте их максимума линейно зависит от величины Н и величины соз у. Это обстоятельство, как будет видно в дальнейшем, позволяет сделать весьма серьезные выводы о изучаемых особенностях линий. Кроме того, несложно видеть, что ввиду указанных свойств триплетная линия и линия со сложным расщеплением, имеющая эффективный фактор Ланде той же величины, что и триплет, будут давать параметр круговой поляризации той же формы с максимумом на том же расстоянии.

Основные результаты вычислений, по которым можно судить о соответствии расчетов и наблюдений, сведены в табл.2, в столбцах которой даны последовательно: рассчитываемая линия, в столбце 2 – величины Lv_m в миллиангстремах, рассчитанные для модели ТС-элемента Келлера [7], в третьем – величины Lv_m , рассчитанные для модели фотосферы [6]. Остальные данные таблицы требуют пояснения.

В трехкомпонентной модели, предложенной выше, слабое поле может иметь полярность, либо совпадающую с полярностью сильного поля, либо обратную. Понятно, что здесь существует две каче-

ственно разных, но в принципе возможных, физических ситуации. При наблюдениях поверхности Солнца, где присутствуют все три предполагаемых компонента, мы имеем от них суммарный сигнал. При этом, происходит наложение на г_и-профиль линии, образующейся в TC-элементе, r_v-профиля линии, образующегося в областях слабого поля. Область без магнитного поля в формировании суммарного г_v-профиля не участвует. При определении суммарного профиля интенсивности на r₁-профиль от TC-элемента накладывается r_l-профиль образующийся в невозмущенной фотосфере и областях слабого поля, в которых мы имеем все основания считать его идентичным фотосферному. Исходя из этого, мы ввели некоторый коэффициент k, показывающий долю от рассчитанного для областей слабого магнитного поля r_{v} -профиля (r_{vw}), которая накладывается на r_v -профиль TC-элемента (r_{vf}). Другими словами, при суммировании сигнала рассчитывался профиль $r_{vo} = r_{vf} + k^* r_{vw}$, где r_{vo} – итоговый сигнал. Нами проанализированы случаи с различной величиной k. Некоторые результаты расчетов, поясняющие общую картину приведены в графах 4-7 табл.2. В графе 5 приведены расстояния Lv_m суммарных профилей в случае, если слабое магнитное поле имеет другую полярность, но искажения профиля ТС-элемента профилем от слабого поля невелики, k=-0,8. Сравнивая величины Lv_m, приведенные во 2-3 графах таблицы 1 (Lvm для факела и фотосферной сетки), величины, рассчитанные для модели ТС-элемента Келлера и фотосферы (графы 2-3 табл.2) и величины Lv_m для суммарного профиля при коэффициенте *k*=-0,8 (графа 5 табл.2), можно видеть, что соответствие рассчитанных *Lv_m* наблюдаемым данным при учете слабого поля по сравнению с «чистой» моделью Келлера явно ухудшается. В то же время величины r_{vo}, рассчитанные для случая *k*=0,8, то есть в предположения наличия слабого поля той же полярности, что и полярность сильного поля ТС-элементов, дают величины Lv_m, согласующиеся с соответствующими величинами Lv_m, наблюдаемыми в факеле, с точностью лучше 5%. Примерно тот же результат получается в предположении *k*=0,7.

Если мы предполагаем величину k = -3,0 (то есть присутствие в изучаемой области слабого магнитного поля другой полярности занимающего значительную площадь), то отклонения рассчитанных

величин Lv_m (графа 7 табл.2) от наблюдаемых становится еще существеннее и мы не имеем согласия ни для одной из линий. В то же время, предполагая k = 3,0 (то есть наличие обширных областей слабого поля той же полярности, что и полярность TC-элементов) мы имеем соответствие рассчитанных профилей и наблюдаемых для фотосферной сетки лучше 5%. Вполне удовлетворительное соответствие получается и при значениях k вплоть до 4,0.

Таким образом, предполагая справедливость модели Келлера для TC-элемента, наличие в промежутках между TC-элементами областей слабого поля той же полярности, мы достигаем очень приличного соответствия между теоретическими и экспериментально найденными профилями. Меняя соотношение между площадями, занимаемыми TC-элементами и областями слабого поля можно, в рамках принятой модели TC-элемента достичь согласования наблюдаемых r_{vo} -профилей в факеле (k=0,7-0,8) и в узлах фотосферной сетки (k=3,0-4,0).

Линия, λÅ	Lv_m , [6]	Lv _m , [5]	Lv _m , k=0,8	$Lv_m,$ k=-0,8	$Lv_m,$ k=3,0	$Lv_m, k=-3,0$
5247	40,5	40,8	40,8	39	40,8	27,2 53,5
5250	58,5	40,8	53,2	61,2	44,8	65,2
6301	67	64,8	65,5	69,5	65	49,5 80
6302	73	58	65	80	61	86

Будем считать, что, что интенсивность выходящего из TCэлемента излучения составляет I_f а доля площади, занимаемой TCэлементами составляет f от общей площади, с которой получен наблюдаемый сигнал. Интенсивность выходящего из областей слабого поля излучения составляет I_P , а доля этих областей от общей площади, с которой получен сигнал, составляет p. Если мы считаем, что TC-элемент дает профиль, обозначенный r_{vf} , а область слабого поля – r_{vw} -профиль, то результирующий профиль r_{vo} , как несложно видеть, определяется выражением

$$r_{vo} = (r_{vf} * I_f * f + r_{vw} * I_p * p) / [I_f * f + (1 - f) * I_p].$$
(1)

Поделив числитель и знаменатель данного выражения на величину $I_f * f$, имеем выражение

$$r_{vo} = (r_{vf} + k^* r_{vw}) / [1 + (1 - f) / f^* I_p / I_f],$$
(2)

где величина

$$k = (I_p * p)/(I_f * f) = 0,72p/f$$
(3)

соответствует принятому выше ее значению. Отношение I_p/I_f определено для данных моделей [6-7] из прямых расчетов. Знаменатель в выражении (2) играет роль некоторого масштабного множителя и далее обозначен величиной *L*, которую можно найти из отношения

 $L = (r_{vf} + k * r_{vw}) / r_{vo},$

где числитель представляет рассчитываемую нами, а знаменатель – наблюдаемую для данной линии величину r_{vo} . Поскольку в знаменателе неизвестна лишь одна величина – f, то она находится сразу. Сложнее обстоит дело с определением фактора заполнения для областей слабого поля. Поскольку реальное значение напряженности слабого поля нам неизвестно, то какое-либо фиксированное значение максимальной амплитуды r_{vw} -профиля

мы не знаем. Поэтому, предполагая в (3) найденные для факела или фотосферной сетки значения k, мы в данном случае определяем фактор заполнения областями слабого поля для конкретно заданной в процессе расчета величины H = 52 Э. Однако, поскольку амплитуда величины r_{vw} -профиля линейно зависит от H, как было найдено выше, а величина r_{vw} – и от фактора заполнения слабым полем, то есть от величины $r_{vw}*p$, как это несложно понять из формулы (1), то истинное значение р будет равно найденному из выражения (3) значению р, умноженному на величину 52/H.

Используя данные об амплитудах r_{vw} -профилей из табл. 3 работы [2] и формулы (1–3), мы рассчитали величины f и p для всех используемых линий в факеле. Данные сведены в табл.3.

Таблица3

Линия, λÅ	<i>f, k</i> =0,7	<i>f, k</i> =0,8	<i>p</i> *52/ <i>H</i> , <i>k</i> =0,7	<i>p</i> *52/ <i>H</i> , <i>k</i> =0,8
5247	0,086	0,084	0,083	0,094
5250	0,088	0,087	0,086	0,097
6301	0,063	0,063	0,062	0,070
6302	0,069	0,069	0,068	0,076

Мы видим, что хорошее соответствие расчетных и наблюдаемых свойств r_v -профилей достигается при сравнительно узком диапазоне значений f и p.

Расчетные значения *f* и *p* для узлов фотосферной сетки приведены в табл. 4.

<u>^</u>	1			
Линия, λÅ	<i>f, k</i> =3,0	<i>f, k</i> =4,0	<i>p</i> *52/ <i>H</i> , <i>k</i> =3,0	<i>p</i> *52/ <i>H</i> , <i>k</i> =0,8
5247	0,012	0,010	0,048	0,058
5250	0,013	0,012	0,058	0,068
6301	0,034	0,032	0,141	0,175
6302	0,034	0,031	0,141	0,171

Таблица 4

Мы видим, что при значении фактора заполнения (доли ТСэлементов от общей площади) f = 0,06-0,09 и доли фонового поля p= (0,06-0,10)*52/H(Э), можно согласовать наблюдаемые r_v-профили обеих пар линий, если предполагать в яркой факельной площадке присутствие областей слабого поля той же полярности, с точностью лучше 5%. Хорошее соответствие теоретических и наблюдаемых в узлах фотосферной сетки r_v -профилей достигается при f = 0,01-0,03и доли фонового поля p = (0,05-0,18)*52/H(Э). Кроме того, полученные соотношения налагают определенные ограничения на величину слабого поля в области факелов и фотосферной сетки. Понятно, что доля фонового поля не может превышать 1, и соотвественно, средняя величина H в области факела не может быть меньше ~3–Э, а в области фотосферной сетки ~3-10 Э. При этом, исходя из подобранных для ТС-элемента значений Н и полученных факторов заполнения, несложно получить, что средние наблюдаемые значения поля, полученные для факельной лощадки, должны составлять H_{cp} =

100–170 Э, а в области узла фотосферной сетки $H_{cp} = 20-60$ Э. Полученные значения вполне согласуются с прямыми наблюдениями.

Наша модель ТС-элемента [1], удовлетворительно согласуясь с моделями [7,10] и, имея сходные с ними отличия от модели фотосферы, хорошо описывала зависимость площади r_v-профилей линий S_{ν} от их эквивалентной ширины W, поскольку была построена исходя из именно этой зависимости. Следовательно, итоговая трехкомпонентная модель также должна описывать связь S_v и W. Мы рассчитали эту зависимость для указанных в табл.2-4 величин k. На примере модели с k = 0.7 покажем особенности поведения линий. Нами были рассчитаны профили 22 магнитоактивных линий. По сравнению со списком, приведенным в нашей работе [1] была исключена линия Fe 1 λ 5397,1 Å, при расчете параметров которой в приближении истинного поглощения возникают значительные ошибки в области малых значений оптической глубины и к расчетам привлечены две других линии железа: λ 5083,3 Å, у которой отношение измеренной в ней величины магнитного поля к величине Н, измеренной в линии λ 5253,5 составляет $k_i = H_{5083}/H_{5253} = 1.53$ и линия λ 5127,7 Å, имеющая коэффициент $k_i = 0,11$. Данные о линях и их коэффициентах взяты из литературных источников [7, 11]. Зависимость S_v и W по 22 линиям имеет коэффициент корреляции R=0,54, то есть прослеживается достаточно слабая связь. Анализ показал, что тесная связь есть только для относительно слабых линий. По этой причине мы разделили весь массив линий на 2: у которого рассчитанные эквивалентные ширины меньше и больше 80 mÅ. Массив значений линий с *W*<80 mÅ показывает тесную связь наблюдаемых и рассчитанных относительных величин k_i с коэффициентом корреляции *R*=0,97. В то же время, коэффициент корреляции наблюдаемых и расчетных величин k_i у линий с W>80 mÅ составляет R=0,34, в основном за счет 2 линий с самыми малыми эквивалентными ширинами. Если их из общего массива исключить, то по оставшимся 9 линиям величина R составляет -0,09, т. е. у линий с *W*> 120 mÅ можно полагать отсутствие связи S_v и W, или некоторое уменьшение S_v с ростом W.

Все то же самое можно сказать и о других моделях ТС-элемента [10–11]. Хорошо соответствуя наблюдениям по слабым линиям и

линиям средней силы, для сильных линий модели дают заниженные, по сравнению с наблюдениями, значения *H*. Это значит, что в верхних слоях атмосферы, задаваемых данными моделями, должны быть другие физические условия. Из общих соображений можно предположить, что там должен быть больший, чем в [1,7,10–11] температурный градиент.

Просуммируем краткие итоги работы.

1. Величина магнитного поля в TC-элементе близка к значениям, описываемым формулой $H(\Im) = 1716 + 104*x$, где $x = \lg \tau$ – логарифм оптической глубины.

2. Попытка аппроксимировать наблюдаемые *r_v*-профили суммой профилей от TC-элементов и от областей со слабым магнитным полем другой полярности приводит к рассогласованию расчетных и наблюдаемых профилей линий.

3. При значении фактора заполнения f = 0,06-0,09 и доли фонового поля p = (0,06-0,10)*52/H(Э) с точностью лучше 5% можно согласовать наблюдаемые r_v -профили обеих пар линий, если предполагать в ярком факеле присутствие областей слабого поля той же полярности. Соответствие теоретических и наблюдаемых в узлах фотосферной сетки r_v -профилей достигается при f = 0,01-0,03 и доли фонового поля p = (0,05-0,18)*52/H(Э).

4. Причиной, обуславливающей результаты п.п.2 и 3 является то, что величина смещения максимума r_{ν} -профиля от центра линии $Lr_{\nu m}$ при расщеплениях $\delta\lambda_{\rm H} \ll \delta\lambda_{\rm D}$ не зависит от величины H, а глубина r_{ν} -профиля практически линейно растет с ростом H.

5. Для линий с эквивалентной шириной W < 80 mÅ в рамках предложенной модели и существующих моделей TC-элемента получена связь площади r_v -профиля S_V (сигнала стоксметра) и W, соответствующая наблюдениям. Линии с W > 120 mÅ показывают величины S_V , меньше наблюдаемых. Это значит, что температурное распределение указанных моделей требует уточнения в области малых оптических глубин.

ЛИТЕРАТУРА

8. Баранов А. В., Баранова Н.Н. Особенности модели магнитного поля элемента тонкой структуры солнечной атмосферы, найденные по зависимости магнитного поля от эквивалентной ширины линий // Солнечная активность и ее влияние на Землю. Владивосток: Дальнаука, 1996, С.3-14.

9. Баранов А. В., Баранова Н.Н. Модель тонкоструктурного элемента солнечной атмосферы по данным анализа профилей Стокса различных спектральных линий // Солнечная активность и ее влияние на Землю. Владивосток: Дальнаука, 1999, Вып. 3. С.5-14.

10. Гуртовенко Э. А., Костык Р. И. Фраунгоферов спектр и система солнечных сил осцилляторов. Киев: Наукова думка, 1989. 200 с.

11. Bellot Rubio L. R., Ruiz Cobo B., and Collados M. Flux-tube model atmospheres and Stokes V zero-crossing wavelengths // Astrophys. J. 1997. V. 478. L.45-48.

12. *Frutiger C. And Solanki S.* K. Do solar magnetic elements harbor downflows? // Astronomy and Astrophysics. 1998. V. 336. L.65-68.

13. *Holweger H., Müller E. A //* The photospheric barium spectrum: solar abundance and col-lision of Ba11 lines by hydrogen // Solar Phys. 1974. V. 39. No. 1. P.19-30.

14. *Keller C. U., Solanki S. K., Steiner O., Stenflo J. O.* Structure of solar magnetic fluxtubes from the inversion of Stokes spectra at disk center // Astronomy and Astrophysics. 1990. V. 233. No. 2. P.583-597.

15. Sánshez Almeida, J. Physical properties of the solar magnetic photosphere under the MISMA hypothesis. I. Description of the inversion procedure // Astrophys. J. 1997. V. 491. P.993-1008.

16. Sánshez Almeida, J. Physical properties of the solar magnetic photosphere under the MISMA hypothesis. II. Network and internetwork fields at the disk center // Astrophys. J. 2000. V. 532. P.1215-1229.

17. Solanki S. K. Velocities in solar magnetic flaxtubes // Astronomy and Astrophysics. 1986. V. 168. P.311- 329.

18. Solanki S. K. Small-scale solar magnetic fields: An overview // Space Sky review. 1993. No. 63. P.1-188.