хотя со временем ее характер меняется. Наблюдаются также вариации средних углов наклона осей групп пятен в ходе 11-летнего цикла, причем не связанные с законом Шперера. Эти вариации имеют асимметричный характер – они хорошо заметны в северном полушарии, но в южном выражены слабо или же совсем отсутствуют.

ЛИТЕРАТУРА

1. *Howard R.F.* The Magnetic Field of Active Regions.V. Magnetic Axis Orientation // Solar Phys. 1991. V.132. P. 49-61.

2. Howard R.F. Axial Tilt Angles of Sunspot Groups // Solar Phys. 1991. V.136, N.2. P.251-262.

3. *Sivaraman K.R., Gupta S.S., Howard R.F.* Measurement of Kodaikanal White-Light Images. IV. Axial Tilt Angles of Sunspot Groups // Solar Phys. 1999. V.189. P.69-83.

4. *Wang Y.-M., Sheeley N.R.* Average Properties of Bipolar Magnetic Regions During Sunspot Cycle 21 // Solar Phys. 1989. V.124. P.81-100.

В.В. Касинский*

ЭНЕРГЕТИЧЕСКИЙ СПЕКТР РЕНТГЕНОВСКИХ ВСПЫШЕК НА СОЛНЦЕ В ТРЕХ ЦИКЛАХ АКТИВНОСТИ (1972–2000 гг.)

Исследован характер интегрального энергетического спектра (ИЭС) рентгеновских вспышек на Солнце в рамках формализма степенного спектра: N(E>E m) ~ E^{-b}. Здесь N – накопленное число вспышек с энергией выше заданной E_m, b – показатель спектра. Ранее была показана корреляция индекса b (0,90-0,50) с числом Вольфа (W) для одного цикла [3]. Цель статьи – пересмотреть циклические вариации ИЭС рентгеновских вспышек на большой шкале - ~30 лет - на протяжении трех циклов N21-23 Солнца и на более полном материале (~55 000 вспышек). Получена зависимость таких параметров, как предельная энергия вспышки, индекс b, число микровспышек ($E \cong 10^{25}$ эрг) и других от фазы 11-летнего цикла. Обнаружен новый факт – монотонный рост b на протяжении 30 лет. Определяется роль индекса b в интерпретации моделей солнечнозвездных вспышек. Результаты обсуждаются в рамках сопоставления традиционных (Солнце) и альтернативных моделей вспышек на звездах (UV-Cet), допускающих выделение энергий в единичном акте до 10³⁶ эрг [1]. Последнее требует пересмотра традиционных "магнитных" моделей солнечных вспышек с привлечением энергий внешнего воздействия - модель "солитонов" Могилевского [2] или волн типа "цунами" [9].

1. ИНТЕГРАЛЬНЫЙ ЭНЕРГЕТИЧЕСКИЙ СПЕКТР ВСПЫШЕК И ЕГО СВОЙСТВА

Для получения ИЭС этого по данным потока F (erg cm⁻² c⁻¹) рентгеновского излучения в диапазоне 1-8 A [9], времени начала – t_o , максимума – t_{max} и конца вспышки – t_e , рассчитаны полные

*ИрГУПС, Иркутск

энергии излучения вспышек E, проинтегрированные по всей полусфере $2\pi R^2$, где R = 1 а. е. согласно методике [3,4]. Полученные энергии укладываются в диапазон $10^{24}-10^{31}$ эрг, что не превышает энергий оптических вспышек. Далее строилось распределение накопленного числа вспышек за год N(E_m) с энергиями E > E_m, которое аппроксимировано степенной функцией вида:

$$N(E_m) = \int n(E) dE \sim C E^{-b}.$$
 (1)

В двойных логарифмических координатах (logE, logN) имеет место три особенности спектра (рис.1). В области малых энергий наблюдается характерный "завал" в спектре, вызванный порогом обнаружения вспышек (инструментальный эффект [1]). В области средних энергий соблюдается линейная зависимость вида:

$$lg E = log E_m - (1 / b) \times lg N.$$
(2)

Как видно из (2), при росте N энергии падают, что физически соответствует энергиям микровспышек ($E \sim 10^{25}$ эрг). Наоборот, имеется одна вспышка в году, с "предельной энергией", что соответствует условию N = 1 и lgE = lgE_m. Предельная энергия есть теоретически возможная максимальная энергия по (2).

В области больших энергий (>10²⁸эрг) наблюдается "провал" спектра, что связано с эффектом "насыщения" по мере приближения к предельной logE_m энергии. Действительно, какова бы ни была природа вспышечной активности, в рамках любой модели должно существовать физическое ограничение на максимальную мощность вспышки [1,2]. По линейной аппрокси-мации ИЭС определялся показатель степенного спектра b, который равен "наклону спектра" "в координатах "logE – logN": b = - ΔlgN / ΔlgE (puc.1).

В таблице приведены расчетные параметры интегральных энергетических спектров вспышек за 30 лет, 1972–2001 гг., (55 048 вспышек). В столбцах даны: 1 – год, 2 – логарифм предельной энергии, 3 – показатель степени спектра по всем данным (totals), 4 – число вспышек за год, 5 – число Вольфа, 6 – логарифм числа вспышек с энергиями 10²⁵ эрг, 7 – показатель степени по

"линейной" части спектра. Максимальная энергия рентгеновской вспышки (теоретический предел) составила log E = 32,52 в 1989 г. Среднее за 30 лет log E = 31,01. Таким образом, оценки предельных энергий вспышек (2-й столбец таблицы) в рентгеновском диапазоне оказываются гораздо ниже предельной энергии, наблюдаемой в оптике 2-5×10³² эрг (вспышка 4 августа 1972 г.) [1-2,5]. Фактические энергии еще ниже из-за наличия "провала" в спектре (рис.1). Параметры ИЭС b и lg E _m плохо коррелируют между собой, r ≤ 0,37. Поэтому они могут быть выбраны в качестве двух независимых параметров (фазовых координат) степенного спектра вспышек. В то время как первый определяет "наклон спектра", характеризуя относительную роль сильных и слабых вспышек, второй определяет максимальную энергию, отсекаемую прямой (2) на оси энергий. Отдельно каждый из них хорошо коррелирует с числом Вольфа (W), выявляя заметную 11-летнюю модуляцию на уровне (r – коэффициент корреляции, см.рис.2):

r (b, W) =
$$0,49 \div 0,58$$
,
r (log E m, W) = $0,80 \div 0,72$

Предельные энергии вспышек (степенная аппроксимация) показывают довольно высокий коэффициент корреляции и 11-летнюю модуляцию с числом вспышек N/ год:

$$r (logE_m, N) = 0,77 \div 0,71.$$

Неожиданным фактом, вытекающим из оценок параметров степенного спектра на значительном отрезке времени (1972–2001 гг.), является обнаружение положительного тренда спектрального индекса b со временем:

$$b = 0,0041T + 0,598,$$

где Т – число лет, отсчитываемых от даты T_o = 1972.

Пока неясно, отражает ли этот тренд вековые изменения (80летний цикл) или является случайным артефактом. Вероятнее всего,

Год	Log Em	b-полное	N/год	W	Lg N ₂₅	b-
	-					линейное
1972	31,2	0,68±0,01	2723	69	4,22	-
1973	30,38	$0,88\pm0,02$	1784	38	3,20	-
1974	31,35	$0,504{\pm}0,08$	321	34	3,22	-
1975	28,56	0,57	250	15	3,3	-
1976	29,7	0,64±0,10	153	12	3,44	-
1977	30,3	$0,60\pm0,08$	268	27	3,24	0,40±0,11
1978	31,6	0,60±0,03	1134	92	4,24	0,68
1979	31,6	0,64±0,03	1469	155	4,28	0,76
1980	31,6	0,69±0,01	2463	155	4,6	0,79
1981	31,9	0,684±0,005	4005	140	4,84	$0,82{\pm}0,05$
1982	32,3	0,631±0,005	3852	116	4,64	0,74
1983	31,8	0,71	2583	67	4,36	0,88
1984	31,8	0,58	2176	46	3,95	0,71
1985	30,1	0,68	1065	18	3,45	0,80
1986	30,3	0,62	916	13	3,39	0,66
1987	30,4	0,68	1389	29	3,96	0,76
1988	31,6	0,64	2357	100	4,24	0,72
1989	32,5	0,60	2610	158	4,56	0,68
1990	31,5	0,72	2630	142	4,68	0,84
1991	32,2	$0,659\pm0,05$	3324	145	4,08	0,81±0,04
1992	31,6	0,67	2816	90	4,4	0,82
1993	31,1	0,69	2429	56	4,04	0,88
1994	30,3	0,69±0,02	1612	22	3,63	0,83
1995	29,2	$0,72\pm0,02$	1124	16	3,45	0,90
1996	29,2	0,63	510	9	3,03	0,79
1997	30,4	0,66	1138	22	3,57	0,77
1998	31,1	$0,68\pm0,01$	2244	62	4,32	0,80
1999	30,9	$0,76\pm0,01$	2421	95	4,52	0,93
2000	30,9	$0,80\pm0,01$	2260	130	4,76	0,97
2001	31,4	0,72±0,01	2703	134	4,6	0,89±0,03
	Среднее	b-полное	Сумма		Среднее	b-
	-		-		_	линейное
	31,01	$0,666\pm0,005$	56 500		4,01	$0,79\pm0,01$

Параметры интегрального энергетического спектра Х-вспышек Солнца

Примечание. Данные за 1975 г. получены интерполяцией соседних значений.

он объясняется прогрессивным ростом числа наблюдаемых вспышек от цикла к циклу вследствие совершенствования регистраторов Х-вспышек. Во всяком случае, рост b может означать стремление показателя к 1, что может означать возрастание роли микровспышек в цикле N 23 и в последующих циклах активности.

Наконец отметим, что в 3-м столбце даны оценки показателя степенного спектра по всем вспышкам (сильным и слабым). Если отбросить "завал" в области низких энергий и "провал" в области высоких энергий, то останется "линейная часть", характеризующая энергетический спектр вспышек "средних" энергий. При этом количество вспышек сокращается на 25% и более и аппроксимация по формуле (2) становится менее точной. Тем не менее в 7-м столбце таблицы мы приводим b по "линейной части" степенного спектра. При этом ежегодные значения b возрастают и в 2000 г. достигают b= 0,97 - практически единицы. Среднее за 25 лет равно: $= 0,794\pm \pm 0,005$, что практически совпадает с b = 0,80 для оптических вспышек [6]. Однако это не дает оснований для далеко идущих выводов, поскольку результат [6] получен по очень ограниченным и селективным данным.

2. ОБСУЖДЕНИЕ

Из таблицы видно, что показатель степени b варьирует с фазой цикла, т. е., вероятно, изменяется с числом Вольфа (W). Средний по циклам показатель степенного спектра рентгеновских вспышек (b = $=0,662 \pm 0,005$) заметно меньше, чем для оптических (Opt) вспышек, (b = 0,80) [5]. Как показано в [8], средняя мощность вспышечного излучения за большой промежуток времени ε / T существенно зависит от показателя спектра b. При b < 1 основной вклад в ε / T дают редкие, но мощные вспышки, при b > 1 – частые, но более слабые. Таким образом, приближение b к 1, наблюдаемое в 2000 г. (b= =0,805), означает лишь повышение роли слабых вспышек в средней мощности вспышечной энергии за один год. Тот факт, что в целом b(X) < b(Opt) означает, что при равенстве энергий log E частота рентгеновских вспышек меньше, чем оптических. Кроме того, как

видно из таблицы, диапазон энергий в рентгене (X), данные в таблице, меньше диапазона оптических вспышек (предел -5×10^{32} эрг). Так как частота v(Opt) >> v(X), то в рамках традиционных моделей вспышек – "магнитного источника энергии" – это значит, что процесс оптических вспышек (в хромосфере) является более вероятным по частоте и больше по энергии по отношению к процессу рентгеновских вспышек. С точки зрения моделей это означает, что процесс в хромосфере (в оптике) доминирует по отношению к процессу в короне (рентген, радиоизлучение).

2.1. ВСПЫШКИ МАКСИМАЛЬНЫХ И МИНИМАЛЬНЫХ ЭНЕРГИЙ И МОДЕЛИ ВСПЫШЕК

Общая энергия вспышек близка по порядку величины к хромосферной и корональной светимостям [1,2,7,8], что является исходным аргументом гипотезы о нагреве корон многочисленными микровспышками.

Для оценки возможного вклада слабых – ниже порога обнаружения – вспышек в суммарное излучение вспышек можно воспользоваться формулой (2), положив в ней log E = 25. Величина энергии 10^{25} эрг, по нашим данным (рис.1), хорошо характеризует порог обнаружения вспышек в рентгене. Полагая $25 = \log E_m - (1 / b) \times \lg N_{25}$, можно оценить предельное число микровспышек, наблюдаемых на данный год в цикле. Это число приведено в 6-м столбце таблицы. Как видно, оно также показывает заметную корреляцию с числом Вольфа – растет в максимуме и спадает к минимуму цикла. Коэффициент корреляции r (log N₂₅, W) = 0,84.

Абсолютный максимум предельной энергии в одной Х-вспышке за 30 лет оценивается как $3,3 \times 10^{32}$ эрг в 1989 г. Оценки наибольших энергий (см. таблицу) имеют важное значение, поскольку наиболее мощные вспышки накладывают самые сильные ограничения на энергетические источники вспышек [2]. Реализация энергетического спектра требует определенного времени T с тем, чтобы был достигнут весь диапазон энергий от E_{min} до E_{max} [1]. Учитывая энергетичес-

Рис.1. Энергетический спектр Х-вспышек (6378) Солнца (1994–1998 гг.). По вертикали – log E (эрг), по горизонтали – log N. Наклон прямой определяет b = 0,650

ки слабую вспышечную активность Солнца, по сравнению со звездной, (энергии до 10³⁶ эрг) [1,2], следует ожидать, что время ~ 1 год для Солнца достаточно для реализации степенного спектра.

С другой стороны, в рамках современных "магнитных моделей" вспышек [6], энергия может высвобождается практически "мгновенно", как только магнитная структура всплывает на поверхность. Отсутствие больших магнитных структур может объяснить систематический "провал" ИЭС в области больших энергий (рис.1) как следствие "дефицита" гигантских активных областей. Наоборот, "средние" вспышки и субвспышки, определяющие линейную часть спектра, практически успевают реализоваться.

Таким образом, напрашивается следующая модель звездной вспышечной активности. Пятенная активность (зональная на звездах типа UV-Cet [7]) дает начало развитию некоторого процесса в хромосфере, реализующего энергетический спектр вспышек.

Рис.2. Корреляция показателя спектра b с числом Вольфа (W) и предельной энергией вспышки E_m как функция сдвига (годы). Видна 11-летняя модуляция спектра

Этот процесс может быть описан в рамках модели волнового процесса (колебаний) хромосферы как целого [9]. Этот процесс в свою очередь определяет частоту генерации микровспышек с периодом модуляции цикла. Наряду с волнами малой амплитуды, ответственными за микровспышки, должны присутствовать макроволны большого масштаба типа "цунами" [9], дающие большие вспышки. Следовательно, реализация энергии происходит не "мгновенно", как того требуют "магнитные" модели вспышек, а с запаздыванием ~1 год относительно групп пятен, что может объяснить запаздывание b относительно чисел Вольфа – W, обнаруженное в ранних работах [3,4].

В этом плане заслуживают внимания два факта, полученные при наблюдении вспышек по программе патруля звёзд типа EV Lac [7]. Это следующие: 1) обнаружение температурного плато – области с малым вертикальным градиентом температуры как в спокойной хромосфере, так и для вспышек звезды; 2) перманентно существую-

щие на звезде микровспышки. Первый факт легко связать с температурным волноводом для внутренних гравитационных волн в хромосфере, а второй свидетельствует о существовании "волно-вого фона", генерирующего микровспышки и в отсутствие зон "запятненности". Очень важно, что на EV Lac были обнаружены две долготы вспышечной активности – генерирующие сильные вспышки (зона пятен) и, на антиподальной долготе, – зона слабой вспышечной активности.

3. ЗАКЛЮЧЕНИЕ

Исследование интегрального энергетического спектра рентгеновских вспышек на Солнце в рамках формализма степенного спектра за три цикла солнечной активности N21-23 (55 000 вспышек) приводит к следующим результатам.

1. Интегральный энергетический спектр вспышек носит степенной характер. Средний за 30 лет показатель степенного спектра b = $0,666 \pm 0,005$. Диапазон вариаций показателя степени (0,504 < b < < 0,805) находится в разумном согласии с предыдущими оценками [3, 4].

2. Показатель степени b демонстрирует вариации с фазой 11летнего цикла, коррелируя как с числом Вольфа (W), так и с числом вспышек N за год. Показатель b возрастает от эпохи минимума к эпохе максимума. Скользящее среднее $\langle b \rangle = 0,637$ (эпоха минимума) и $\langle b \rangle = 0,715 \pm 0,005$ (эпоха максимума). Имеется сильная модуляция таких параметров, как предельная энергия вспышки (log E_m), индекс b, число микро-вспышек (Log N₂₅), и такого параметра, как "дефицит энергий сильных вспышек" log E_m —log E от фазы 11летнего цикла (W). Эта 11-летняя (и заметная 22-летняя) модуляции показывают, что интегральный спектр "пульсирует" как целое с фазой 11-летнего солнечного цикла.

3. Обнаружен новый факт – монотонный рост b на протяжении 30 лет. Отмечен временной сдвиг максимума корреляции индекса b на +1 год относительно чисел Вольфа (W). Корреляция среднего и W соответственно 0,53 и 0,80. Результаты обсуждаются в рамках сопоставления традиционных (Солнце) и альтернативных моделей вспышек на звездах. Циклические изменения параметров степенного спектра с фазой 11-летнего цикла (пульсации спектра) требуют пересмотра традиционных "магнитных" моделей вспышек с привлечением энергий внешнего воздействия – модель "солитонов" [2] или волн типа "цунами" (для мощных вспышек в случае Солнца) [9].

ЛИТЕРАТУРА

1. Гериберг Р. Е. Вспыхивающие красные карликовые звезды // Успехи физических наук. 1998. Т. 168, № 8. С. 891-898.

2. Гериберг Р. Е., Могилевский Э. И., Обридко В. Н. Энергетика активности вспыхивающих звезд: синергетический подход // Кинематика и физика небесных тел. 1987. Т.3, , № 5. С. 3-17.

3. *Kasinsky V.V., Sotnicova R.T.* (1989). Solar and stellar flares U.A.I. Colloq. No.104, 15-19 Aug. 1988, Stanford Univ., California, USA: POSTER PAPERS, ed. B. M. Haisch and M. Rodono, Special publication. 1989. P. 255-258.

4. Касинский В. В., Сотникова Р. Т. Вариации энергетического спектра и временной шкалы рентгеновских вспышек в 11-летнем цикле солнечной активности (№21) // Исследования по геомагнетизму, аэрономии и физике Солнца. М.: Наука, 1989. , № 87. С. 43-55.

5. *Курочка Л.Н.* Распределение энергии 15 тысяч солнечных вспышек // Астрон. ж. 1987. Т. 64, № 2. С. 443-446.

6. Сомов Б. В. Магнитное пересоединение и энергетика солнечных вспышек // Год солнечного максимума. М: Наука, 1981. С.100-107.

7. *Alekseev I. Yu. and Gershberg R. E.* The activity of the red dwarf stars EV Lac // The Earth and Universe. Aristotel Univ. Thessaloniki. Ziti Ed.,1997. P. 43-57.

8. Gershberg R. E. Time scales and energy of flares on red-dwarf stars // XXII Congres. Soc. Astron. Italy. Catania, 4-7 may 1988. Prepr. N. 9. P. 3-16.

9. Kasinsky V.V., Krat V.V. On the solar tsunamy // Solar Physics. 1973. V. 31. P.219-228.

10. PRAF of Solar Geophysical Data, (1972 –2001). NOAA-USAF Space Envir. Center, Boulder, Colo., US Dep. Comm.

К ВОПРОСУ О ДВИЖЕНИЯХ В ТОКОВЫХ ПЕТЛЯХ

В настоящее время имеются убедительные свидетельства того, что в волокнах активных областей Солнца текут электрические токи. Одним из аргументов в пользу существования таких токов является часто наблюдаемая скрученность волокон в активных областях, когда волокно состоит из нескольких перевитых между собой тонких волоконец. Электрические токи волокон, вероятно, играют важную роль в энергетике солнечных вспышек. Было показано, что перед вспышкой скрученность связанного с ней волокна увеличивается (увеличивается ток), а после вспышки уменьшается (уменьшается ток) [3, 8]. Оценки величины токов в волокнах, как правило, делаются на основании измерений степени скручивания их и приводят к значениям полных токов в пределах от 10^{10} A до 3×10^{11} A. Перед вспышкой полные токи могут достигать величины 10^{12} A.

Согласно [5] разрыв токовой цепи приводит к диссипации магнитной энергии тока и при столь значительных токах диссипация может обеспечить энергетику крупной вспышки. Эта "контурная" модель вспышки в последнее время успешно развивается В.В. Зайцевым и А.В. Степановым [1,2]. Они предполагают, что в результате желобковой неустойчивости протуберанца, лежащего над токовой петлей, слабоионизованная плазма протуберанца проникает в токовую петлю и резко (на 8–9 порядков величины) увеличивает электрическое сопротивление петли, что эквивалентно разрыву электрической цепи. Сами электрические токи возникают благодаря механизму динамо, когда в условиях низкой ионизации фотосферной плазмы гидродинамические движения приводят к разделению зарядов (ионы увлекаются нейтральными атомами) и возникновению электрического поля.

В плазме, состоящей из заряженных частиц и нейтральных атомов, под действием электрического поля заряженные частицы начи-

Г.И. Корниенко